An eigenvalue transformation technique for predicting drug-target interaction

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An eigenvalue transformation technique for predicting drug-target interaction

The prediction of drug-target interactions is a key step in the drug discovery process, which serves to identify new drugs or novel targets for existing drugs. However, experimental methods for predicting drug-target interactions are expensive and time-consuming. Therefore, the in silico prediction of drug-target interactions has recently attracted increasing attention. In this study, we propos...

متن کامل

Gaussian interaction profile kernels for predicting drug-target interaction

MOTIVATION The in silico prediction of potential interactions between drugs and target proteins is of core importance for the identification of new drugs or novel targets for existing drugs. However, only a tiny portion of all drug-target pairs in current datasets are experimentally validated interactions. This motivates the need for developing computational methods that predict true interactio...

متن کامل

Predicting drug-target interaction for new drugs using enhanced similarity measures and super-target clustering1

Predicting drug-target interaction using computational approaches is an important step in drug discovery and repositioning. To predict whether there will be an interaction between a drug and a target, most existing methods identify similar drugs and targets in the database. The prediction is then made based on the known interactions of these drugs and targets. This idea is promising. However, t...

متن کامل

Predicting Drug-Target Interactions Using Drug-Drug Interactions

Computational methods for predicting drug-target interactions have become important in drug research because they can help to reduce the time, cost, and failure rates for developing new drugs. Recently, with the accumulation of drug-related data sets related to drug side effects and pharmacological data, it has became possible to predict potential drug-target interactions. In this study, we foc...

متن کامل

Predicting drug-target interactions via sparse learning

Drug-target interaction (DTI) prediction plays a very important role in drug development. Biochemical experiments or in vitro methods to identify such interactions are very expensive, laborious and time-consuming. Therefore, in silico approaches including docking simulation and machine learning have been proposed to solve this problem. In particular, machine learning approaches have attracted i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scientific Reports

سال: 2015

ISSN: 2045-2322

DOI: 10.1038/srep13867